A sharp-edge-based acoustofluidic chemical signal generator
نویسندگان
چکیده
منابع مشابه
Acoustofluidic Chemical Waveform Generator and Switch
Eliciting a cellular response to a changing chemical microenvironment is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. The nature and scope of the response is highly dependent upon the spatiotemporal characteristics of the stimulus. To date, studies that investigate this phenomenon have been limited to di...
متن کاملA spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures.
The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical...
متن کاملA reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures.
We present a programmable acoustofluidic pump that utilizes the acoustic streaming effects generated by the oscillation of tilted sharp-edge structures. This sharp-edge-based acoustofluidic pump is capable of generating stable flow rates as high as 8 μL min(-1) (~76 Pa of pumping pressure), and it can tune flow rates across a wide range (nanoliters to microliters per minute). Along with its abi...
متن کاملProbing Cellular Dynamics with a Chemical Signal Generator
Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic "chemical signal generator," a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing) str...
متن کاملEcg Signal Generator Based on Geometrical Features
Electrocardiograms are widely used in biomedical signal processing to diagnose abnormal heart functioning. Many algorithms have been constructed to analyse, measure and compress these signals. These methods are hard to test because real ECG signals are distorted by several types of noise. In this paper we present an algorithm which generates realistic synthetic ECG signals. This algorithm, amon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lab on a Chip
سال: 2018
ISSN: 1473-0197,1473-0189
DOI: 10.1039/c8lc00193f